This is an unbalanced analysis-of-covariance example, where one covariate is affected by a factor. Feeder calves from various herds enter a feedlot, where they are fed one of three diets. The weight of the animal at entry is the covariate, and the weight at slaughter is the response.
Format
A data frame with 67 observations and 4 variables:
herda factor with levels
91633224311936343533, designating the herd that a feeder calf came from.dieta factor with levels
LowMediumHigh: the energy level of the diet given the animal.swta numeric vector: the weight of the animal at slaughter.
ewta numeric vector: the weight of the animal at entry to the feedlot.
Source
Urquhart NS (1982) Adjustment in covariates when one factor affects the covariate. Biometrics 38, 651-660.
Details
The data arise from a Western Regional Research Project conducted at New
Mexico State University. Calves born in 1975 in commercial herds entered a
feedlot as yearlings. Both diets and herds are of interest as factors. The
covariate, ewt, is thought to be dependent on herd due to
different genetic backgrounds, breeding history, etc. The levels of
herd ordered to similarity of genetic background.
Note: There are some empty cells in the cross-classification of
herd and diet.
Examples
feedlot.lm <- lm(swt ~ ewt + herd*diet, data = feedlot)
# Obtain EMMs with a separate reference value of ewt for each
# herd. This reproduces the last part of Table 2 in the reference
emmeans(feedlot.lm, ~ diet | herd, cov.reduce = ewt ~ herd)
#> herd = 9:
#> diet emmean SE df lower.CL upper.CL
#> Low 839 32.7 36 773 906
#> Medium 877 40.1 36 796 958
#> High nonEst NA NA NA NA
#>
#> herd = 16:
#> diet emmean SE df lower.CL upper.CL
#> Low 940 41.3 36 856 1024
#> Medium 951 60.3 36 829 1073
#> High nonEst NA NA NA NA
#>
#> herd = 3:
#> diet emmean SE df lower.CL upper.CL
#> Low 981 32.8 36 915 1048
#> Medium 1002 41.2 36 918 1085
#> High 1015 63.5 36 886 1144
#>
#> herd = 32:
#> diet emmean SE df lower.CL upper.CL
#> Low 1003 33.2 36 936 1070
#> Medium 890 40.2 36 809 972
#> High 970 32.9 36 904 1037
#>
#> herd = 24:
#> diet emmean SE df lower.CL upper.CL
#> Low 982 28.3 36 924 1039
#> Medium 982 32.7 36 916 1048
#> High nonEst NA NA NA NA
#>
#> herd = 31:
#> diet emmean SE df lower.CL upper.CL
#> Low 1128 32.9 36 1062 1195
#> Medium 1069 40.4 36 987 1151
#> High 1111 56.6 36 996 1226
#>
#> herd = 19:
#> diet emmean SE df lower.CL upper.CL
#> Low 1087 28.3 36 1030 1145
#> Medium 1036 40.0 36 955 1117
#> High 999 56.7 36 884 1114
#>
#> herd = 36:
#> diet emmean SE df lower.CL upper.CL
#> Low 1155 40.5 36 1073 1237
#> Medium 1062 41.3 36 978 1146
#> High 1191 57.2 36 1075 1307
#>
#> herd = 34:
#> diet emmean SE df lower.CL upper.CL
#> Low 987 33.6 36 918 1055
#> Medium 1015 41.0 36 931 1098
#> High 1048 40.1 36 967 1129
#>
#> herd = 35:
#> diet emmean SE df lower.CL upper.CL
#> Low 1094 29.1 36 1035 1153
#> Medium 1092 41.8 36 1008 1177
#> High 1103 40.0 36 1021 1184
#>
#> herd = 33:
#> diet emmean SE df lower.CL upper.CL
#> Low 1207 57.3 36 1091 1323
#> Medium 1031 32.7 36 964 1097
#> High 1018 56.6 36 903 1133
#>
#> Confidence level used: 0.95
