
Index of vignette topics
emmeans package, Version 2.0.0
Source:vignettes/vignette-topics.Rmd
vignette-topics.RmdA
B
C
- Causal inference
cld()clmmodels- coda package
coef()- Cohen’s d
- Compact letter displays
- Comparison arrows
- Comparisons
- Comparisons result in
(nothing) - Confidence intervals
confint()- Confounded effects
- Confounding
conseccontrasts- Constrained marginal means
- Consultants
- Containment d.f.
-
contrast() - Contrasts
- Controlled experiments
- Count regression
- Counterfactuals
cov.reduce- Covariates
- cross-group comparisons
cross.adjust
E
effcontrastseff_size()- Effect size
-
emm_basis() emm_listobjectemm_options().emmcfunctions- emmeans package
-
emmeans() -
emmGridobjects -
emmip() - EMMs
-
emtrends() estHook- Estimability
- Estimability issues
- Estimable functions
- Estimated marginal means
- Examples
auto.noise- Bayesian model
-
cbpp ChickWeightcowsfeedlot-
fiber framing- Gamma regression
InsectSpraysInsurance- Insurance claims (SAS)
- Logistic regression
lqsobjectsMOats-
mtcars - Multivariate
- Nested fixed effects
-
neuralgia -
nutrition Oats-
oranges - Ordinal model
-
pigs rlmobjects- Robust regression
- Split-plot experiment
- Unbalanced data
-
warpbreaks - Welch’s t comparisons
wine
- Expected marginal means
- Experimental versus observational data
- Exporting output
- Extending emmeans
F
- F test
- Factors
- Formatting results
- Foundations of EMMs
- Frequently asked questions
G
L
- Labels
- Large models
- Latin squares
- Least-squares means
- Levels
- Linear functions
- Link functions
lmemodels-
lmerModmodels - Logistic-like regression
- Logistic regression
- LSD
M
make.tran()mcmcobjects- Means
- Mediating covariates
- Memory usage
miramodelsmiscattribute and argumentmisc$regrid.flag- Missing cells
mlmmodelsmmermodels-
modeargument - Model
- Model averaging
- Modeling
- Modelling
- Models
- Multi-factor studies
- Multinomial models
- Multiple imputation
- Multiplicity adjustments
- Multivariate contrasts
- Multivariate models
- Multivariate t
(
"mvt") adjustment mvcontrast()- mvtnorm package
N
O
- Observational data
- Observational versus experimental data
- Odds ratios
- Offsets
- Only one mean
opt.digitsoption- Options
- Ordinal models
P
- P values
pairs()-
pairwise ~ factors - Pairwise comparisons
pairwisecontrasts- Pairwise P-value plots
params- Percentage differences
-
plot() plot.emmGrid()- Plots
+operator- Poisson regression
polregmodels- Polynomial regression
- Pooled t
postGridHook- Practices, recommended
- Precision
- Predictions
print.summary_emm()- Probit regression
pwpm()pwpp()
R
- R-squared
- Random predictors
- Random slopes
- Rank deficiency
- Ratios
rbind()- Re-gridding
- Re-labeling
- Recommended practices
-
recover_data() -
recover_data.call() -
ref_grid() - Reference grid
- Reference grids
- Region of practical equivalence
- Registering
qdrgmethods - Registering
recover_dataandemm_basismethods regridargument-
regrid() regrid.flag- Residual plots
- Response scale
- Response transformations
revpairwisecontrastsrg.limitoption- Risk ratios
- RMarkdown
- robmixglm example
- ROPE
- rsm package
rstanarm
S
- Sample size, displaying
- Sandwich estimators
- Satterthwaite d.f.
"scale"typescale()- Selecting results
- Sidak adjustment
- Significance
simple = "each"- Simple comparisons
- Simpson’s paradox
-
specs - Standardized response
stanregobjects- * gazing (star gazing)
- Startup options
- Statistical consultants
- Statistics is hard
str()-
submodel - Subsets of data
-
summary() -
summary_emmobject
T
V
- Variables that are not predictors
vcov.vcovHook- Vignettes