Index of vignette topics
emmeans package, Version 1.10.5.900003
Source:vignettes/vignette-topics.Rmd
vignette-topics.Rmd
A
B
C
- Causal inference
cld()
clm
models- coda package
coef()
- Cohen’s d
- Compact letter displays
- Comparison arrows
- Comparisons
- Comparisons result in
(nothing)
- Confidence intervals
confint()
- Confounded effects
- Confounding
consec
contrasts- Constrained marginal means
- Consultants
- Containment d.f.
-
contrast()
- Contrasts
- Controlled experiments
- Count regression
- Counterfactuals
cov.reduce
- Covariates
- cross-group comparisons
cross.adjust
E
eff
contrastseff_size()
- Effect size
-
emm_basis()
emm_list
objectemm_options()
.emmc
functions- emmeans package
-
emmeans()
-
emmGrid
objects -
emmip()
- EMMs
-
emtrends()
estHook
- Estimability
- Estimability issues
- Estimable functions
- Estimated marginal means
- Examples
auto.noise
- Bayesian model
-
cbpp
ChickWeight
cows
feedlot
-
fiber
framing
- Gamma regression
InsectSprays
Insurance
- Insurance claims (SAS)
- Logistic regression
lqs
objectsMOats
-
mtcars
- Multivariate
- Nested fixed effects
-
neuralgia
-
nutrition
Oats
-
oranges
- Ordinal model
-
pigs
rlm
objects- Robust regression
- Split-plot experiment
- Unbalanced data
-
warpbreaks
- Welch’s t comparisons
wine
- Expected marginal means
- Experimental versus observational data
- Exporting output
- Extending emmeans
F
- F test
- Factors
- Formatting results
- Foundations of EMMs
- Frequently asked questions
G
L
- Labels
- Large models
- Latin squares
- Least-squares means
- Levels
- Linear functions
- Link functions
lme
models-
lmerMod
models - Logistic-like regression
- Logistic regression
- LSD
M
make.tran()
mcmc
objects- Means
- Mediating covariates
- Memory usage
mira
modelsmisc
attribute and argumentmisc$regrid.flag
- Missing cells
mlm
modelsmmer
models-
mode
argument - Model
- Model averaging
- Modeling
- Modelling
- Models
- Multi-factor studies
- Multinomial models
- Multiple imputation
- Multiplicity adjustments
- Multivariate contrasts
- Multivariate models
- Multivariate t
(
"mvt"
) adjustment mvcontrast()
- mvtnorm package
N
O
- Observational data
- Observational versus experimental data
- Odds ratios
- Offsets
- Only one mean
opt.digits
option- Options
- Ordinal models
P
- P values
pairs()
-
pairwise ~ factors
- Pairwise comparisons
pairwise
contrasts- Pairwise P-value plots
params
- Percentage differences
-
plot()
plot.emmGrid()
- Plots
+
operator- Poisson regression
polreg
models- Polynomial regression
- Pooled t
postGridHook
- Practices, recommended
- Precision
- Predictions
print.summary_emm()
- Probit regression
pwpm()
pwpp()
R
- R-squared
- Random predictors
- Random slopes
- Rank deficiency
- Ratios
rbind()
- Re-gridding
- Re-labeling
- Recommended practices
-
recover_data()
-
recover_data.call()
-
ref_grid()
- Reference grid
- Reference grids
- Region of practical equivalence
- Registering
recover_data
andemm_basis
methods regrid
argument-
regrid()
regrid.flag
- Residual plots
- Response scale
- Response transformations
revpairwise
contrastsrg.limit
option- Risk ratios
- RMarkdown
- ROPE
- rsm package
rstanarm
S
- Sample size, displaying
- Sandwich estimators
- Satterthwaite d.f.
"scale"
typescale()
- Selecting results
- Sidak adjustment
- Significance
simple = "each"
- Simple comparisons
- Simpson’s paradox
-
specs
- Standardized response
stanreg
objects- * gazing (star gazing)
- Startup options
- Statistical consultants
- Statistics is hard
str()
-
submodel
- Subsets of data
-
summary()
-
summary_emm
object
T
V
- Variables that are not predictors
vcov.
vcovHook
- Vignettes