This example dataset on sales of oranges has two factors, two covariates, and two responses. There is one observation per factor combination.
Format
A data frame with 36 observations and 6 variables:
store
a factor with levels
1
2
3
4
5
6
. The store that was observed.day
a factor with levels
1
2
3
4
5
6
. The day the observation was taken (same for each store).price1
a numeric vector. Price of variety 1.
price2
a numeric vector. Price of variety 2.
sales1
a numeric vector. Sales (per customer) of variety 1.
sales2
a numeric vector. Sales (per customer) of variety 2.
References
Littell, R., Stroup W., Freund, R. (2002) SAS For Linear Models (4th edition). SAS Institute. ISBN 1-59047-023-0.
Examples
# Example on p.244 of Littell et al.
oranges.lm <- lm(sales1 ~ price1*day, data = oranges)
emmeans(oranges.lm, "day")
#> NOTE: Results may be misleading due to involvement in interactions
#> day emmean SE df lower.CL upper.CL
#> 1 7.38 2.01 24 3.23 11.5
#> 2 6.55 1.92 24 2.58 10.5
#> 3 14.03 1.92 24 10.07 18.0
#> 4 8.40 1.91 24 4.46 12.3
#> 5 16.65 2.47 24 11.55 21.7
#> 6 10.51 1.92 24 6.55 14.5
#>
#> Confidence level used: 0.95
# Example on p.246 of Littell et al.
emmeans(oranges.lm, "day", at = list(price1 = 0))
#> NOTE: Results may be misleading due to involvement in interactions
#> day emmean SE df lower.CL upper.CL
#> 1 18.7 14.4 24 -11.07 48.4
#> 2 38.5 15.1 24 7.30 69.7
#> 3 45.3 26.2 24 -8.66 99.3
#> 4 49.1 16.6 24 14.87 83.4
#> 5 77.9 27.5 24 21.14 134.7
#> 6 73.3 13.5 24 45.44 101.1
#>
#> Confidence level used: 0.95
# A more sensible model to consider, IMHO (see vignette("interactions"))
org.mlm <- lm(cbind(sales1, sales2) ~ price1 * price2 + day + store,
data = oranges)