Skip to contents

These functions provide methods for rbind and [ that may be used to combine emmGrid objects together, or to extract a subset of cases. The primary reason for doing this would be to obtain multiplicity-adjusted results for smaller or larger families of tests or confidence intervals.

Usage

# S3 method for class 'emmGrid'
rbind(..., deparse.level = 1, adjust = "bonferroni")

# S3 method for class 'emmGrid'
e1 + e2

# S3 method for class 'emmGrid'
x[i, adjust, drop.levels = TRUE, ...]

# S3 method for class 'emmGrid'
head(x, n = 6, ...)

# S3 method for class 'emmGrid'
tail(x, n = 6, ...)

# S3 method for class 'emmGrid'
subset(x, subset, ...)

# S3 method for class 'emm_list'
rbind(..., which, adjust = "bonferroni")

# S3 method for class 'summary_emm'
rbind(..., which)

force_regular(object)

Arguments

...

In rbind, object(s) of class emmGrid or summary_emm. In others, additional arguments passed to other methods

deparse.level

(required but not used)

adjust

Character value passed to update.emmGrid

e1, e2, x, object

Objects of class emmGrid

i

Integer vector of indexes

drop.levels

Logical value. If TRUE, the "levels" slot in the returned object is updated to hold only the predictor levels that actually occur

n

integer number of entries to include (or exclude if negative)

subset

logical expression indicating which rows of the grid to keep

which

Integer vector of subset of elements to use; if missing, all are combined

Value

A revised object of class emmGrid

The result of e1 + e2 is the same as rbind(e1, e2)

The rbind method for emm_list objects simply combines the emmGrid objects comprising the first element of .... Note that the returned object is not yet summarized, so any adjust parameters apply to the combined emmGrid.

The rbind method for summary_emm objects (or a list thereof) returns a single summary_emm object. This combined object preserves any adjusted P values or confidence limits in the original summaries, since those quantities have already been computed.

force_regular adds extra (invisible) rows to an emmGrid object to make it a regular grid (all combinations of factors). This regular structure is needed by emmeans. An object can become irregular by, for example, subsetting rows, or by obtaining contrasts of a nested structure.

Note

rbind throws an error if there are incompatibilities in the objects' coefficients, covariance structures, etc. But they are allowed to have different factors; a missing level '.' is added to factors as needed.

These functions generally reset by.vars to NULL; so if you want to keep any “by” variables, you should follow-up with update.emmGrid.

Examples

warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)
warp.rg <- ref_grid(warp.lm)

# Do all pairwise comparisons within rows or within columns, 
# all considered as one faily of tests:
w.t <- pairs(emmeans(warp.rg, ~ wool | tension))
t.w <- pairs(emmeans(warp.rg, ~ tension | wool))
rbind(w.t, t.w, adjust = "mvt")
#>  tension wool contrast estimate   SE df t.ratio p.value
#>  L       .    A - B      16.333 5.16 48   3.167  0.0206
#>  M       .    A - B      -4.778 5.16 48  -0.926  0.9119
#>  H       .    A - B       5.778 5.16 48   1.120  0.8258
#>  .       A    L - M      20.556 5.16 48   3.986  0.0019
#>  .       A    L - H      20.000 5.16 48   3.878  0.0026
#>  .       A    M - H      -0.556 5.16 48  -0.108  1.0000
#>  .       B    L - M      -0.556 5.16 48  -0.108  1.0000
#>  .       B    L - H       9.444 5.16 48   1.831  0.3790
#>  .       B    M - H      10.000 5.16 48   1.939  0.3193
#> 
#> P value adjustment: mvt method for 9 tests 
update(w.t + t.w, adjust = "fdr")  ## same as above except for adjustment
#>  tension wool contrast estimate   SE df t.ratio p.value
#>  L       .    A - B      16.333 5.16 48   3.167  0.0080
#>  M       .    A - B      -4.778 5.16 48  -0.926  0.4614
#>  H       .    A - B       5.778 5.16 48   1.120  0.4022
#>  .       A    L - M      20.556 5.16 48   3.986  0.0014
#>  .       A    L - H      20.000 5.16 48   3.878  0.0014
#>  .       A    M - H      -0.556 5.16 48  -0.108  0.9147
#>  .       B    L - M      -0.556 5.16 48  -0.108  0.9147
#>  .       B    L - H       9.444 5.16 48   1.831  0.1319
#>  .       B    M - H      10.000 5.16 48   1.939  0.1314
#> 
#> P value adjustment: fdr method for 9 tests 

# Show only 3 of the 6 cases
summary(warp.rg[c(2, 4, 5)])
#>  wool tension prediction   SE df
#>  B    L             28.2 3.65 48
#>  B    M             28.8 3.65 48
#>  A    H             24.6 3.65 48
#> 

# After-the-fact 'at' specification
subset(warp.rg, wool == "A")  ## or warp.rg |> subset(wool == "A")
#>  wool tension prediction   SE df
#>  A    L             44.6 3.65 48
#>  A    M             24.0 3.65 48
#>  A    H             24.6 3.65 48
#> 


### Working with 'emm_list' objects
mod <- lm(conc ~ source + factor(percent), data = pigs)
all <- emmeans(mod, list(src = pairwise ~ source, pct = consec ~ percent))
rbind(all, which = c(2, 4), adjust = "mvt")
#>  src.contrast pct.contrast          estimate   SE df t.ratio p.value
#>  fish - soy   .                        -9.47 2.33 23  -4.059  0.0028
#>  fish - skim  .                       -15.58 2.39 23  -6.526  <.0001
#>  soy - skim   .                        -6.11 2.34 23  -2.613  0.0783
#>  .            percent12 - percent9      6.36 2.47 23   2.570  0.0853
#>  .            percent15 - percent12     1.96 2.57 23   0.763  0.9398
#>  .            percent18 - percent15     3.31 3.04 23   1.088  0.7944
#> 
#> Results are averaged over some or all of the levels of: percent, source 
#> P value adjustment: mvt method for 6 tests 

### Irregular object
tmp <- warp.rg[-1]
## emmeans(tmp, "tension")   # will fail because tmp is irregular
emmeans(force_regular(tmp), "tension")   # will show some results
#> Warning: emmeans() results may be corrupted by removal of a nesting structure
#> NOTE: Results may be misleading due to involvement in interactions
#>  tension emmean   SE df lower.CL upper.CL
#>  L       nonEst   NA NA       NA       NA
#>  M         26.4 2.58 48     21.2     31.6
#>  H         21.7 2.58 48     16.5     26.9
#> 
#> Results are averaged over the levels of: wool 
#> Confidence level used: 0.95